Unraveling the multiple bottom-up supplies of an Antarctic nearshore benthic community

L. Zenteno, L. Cárdenas, N. Valdivia, I. Gómez, J. Höfer, I. Garrido, LM. Pardo

PII: S0079-6611(18)30090-9
DOI: https://doi.org/10.1016/j.pocean.2018.10.016
Reference: PROOCE 2031

To appear in: Progress in Oceanography

Received Date: 4 April 2018
Revised Date: 10 October 2018
Accepted Date: 17 October 2018

Please cite this article as: Zenteno, L., Cárdenas, L., Valdivia, N., Gómez, I., Höfer, J., Garrido, I., Pardo, LM., Unraveling the multiple bottom-up supplies of an Antarctic nearshore benthic community, Progress in Oceanography (2018), doi: https://doi.org/10.1016/j.pocean.2018.10.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Unraveling the multiple bottom-up supplies of an Antarctic nearshore benthic community

Zenteno L1,3, Cárdenas L2,3, Valdivia N1,3, Gómez I1,3, Höfer J1,3, Garrido I1,3,4, Pardo LM1,3,*

1 Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
2 Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
3 Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia-Punta Arenas, Chile
4 Département de Biologie, La Faculté des Sciences et de Génie, Université Laval, Quebec, Canada

Département de Biologie, Université Laval, Quebec, Canada

*Corresponding authors: lisette.zenteno@uach.cl, luispardo@uach.cl; +56(61) 2371278
Abstract

Disentangling the bottom-up controls of natural ecosystems is key to understanding the capacity of local communities to resist natural and anthropogenic disturbances. Here, we used carbon and nitrogen stable isotope ratios with a Bayesian multiple source mixing model to trace diverse food sources supporting the benthic trophic network in Fildes Bay (South Shetland Island, Western Antarctic Peninsula). Individuals of 16 species of consumers and five potential food sources (e.g. inter- and subtidal macroalgae, suspended and sinking particulate organic matter, and particulate organic matter from sediment) were collected during January and February 2017. The results showed that benthic organisms of Fildes Bay assimilate a broad range of available organic matter: most of the energy channeled to upper trophic consumers comes from organic matter in the surface sediment, whereas energy moving among lower trophic consumers comes largely from macroalgae and pelagic primary food sources. Overall, our evidence indicates that the present-day nearshore benthic community of Fildes Bay relies on different primary food sources, channeling bottom-up supplies through multiple pathways, which leads to highly stable systems in the face of current scenarios of global change.

Keywords: Maxwell Bay, trophic ecology, ecosystem stability, food web, polar, isotopic analysis, Western Antarctic Peninsula, benthos
1. Introduction

Pulses of phytoplankton have been long recognized as the main primary food source sustaining Antarctic nearshore benthic communities (e.g. Barnes and Clarke, 1995). Nonetheless, several recent studies claim that the role of pelagic primary food sources has been overestimated, concluding that multiple primary food sources sustain these communities (Corbisier et al., 2004; Norkko et al., 2007; Gillies et al., 2013). The existence of different primary food sources implies that energy may flow through multiple pathways across the food web, enhancing its stability in the face of disturbances (e.g. Lawton, 1994). Accordingly, unraveling the multiple bottom-up supplies may be key to understanding the mechanisms underpinning the stability of food webs off coastal Antarctica.

Few studies have documented the importance of primary food sources for consumers in coastal areas off the Antarctic Peninsula (but see Kaehler et al., 2000; Dunton, 2001; Corbisier et al., 2004; Jacob et al., 2006). Thus, the fate of primary food sources and their role in sustaining benthic Antarctic communities remain uncertain. Benthic micro- and macroalgae may be regarded as primary food sources in Antarctic ecosystems (Fischer and Wiencke, 1992; Amsler et al., 1995; Corbisier et al., 2004), providing an important proportion of carbon to Antarctic benthic consumers (e.g. Reichardt, 1987; Dunton, 2001; Corbisier et al., 2004). The availability of subsidies of organic matter for benthic consumers depends, however, on the proportion of sea surface that is covered by ice. For instance, Norkko et al. (2007) found that consumption of detritus is higher in areas covered by ice, whereas the consumption of fresh macroalgae is higher in areas free of ice. Consequently, fresh and detrital matter play a relevant trophic role,
increasing the availability of primary production in coastal areas of the Antarctic Peninsula (Smith et al., 2006; Norkko et al., 2007) and influencing the connections between the water column and benthic processes (Smith et al., 2006).

Stable carbon and nitrogen isotope analysis is a well-established method for tracing the dietary sources and trophic levels of organisms (DeNiro and Epstein, 1981; Tieszen et al., 1983). Carbon isotopic values (δ¹³C), on the other hand, help trace trends in marine habitat use between two extremes of a spatial gradient, namely inshore/benthic and offshore/pelagic habitats (Fry and Sherr, 1984; Wada et al., 1991; Cherel and Hobson, 2007). This gradient in marine habitat use occurs because primary producers in nearshore benthic areas are relatively more ¹³C-enriched than those in offshore and pelagic regions. Thus, in areas where δ¹³C values differ strongly among primary producers, it is possible to detect the relative influence that different sources have on consumer diets (Fry and Sherr, 1984; Hobson et al., 1995; Post, 2002).

Nearshore benthic communities in Fildes Bay off King George Island (South Shetland Islands) constitute a model system for assessing the relative importance of different primary food sources for consumers. Overall, this ecosystem is widely heterogeneous, with trophically linked organisms (Ortiz et al., 2016), and the combination of oceanic and fresh water contributions along with shifting sea ice distributions enhance variability in sea surface temperature, salinity, and primary productivity (Khim and Yoon, 2016; Moreno-Pino et al., 2016). Moreover, short-term simulations in this ecosystem suggest that the dominance of subtidal macroalgae provides greater resistance to disturbances than found in analogous communities dominated by kelp forests and seagrass meadows (Ortiz et al., 2016). All these features hint at the existence
of different bottom-up supplies flowing through multiple pathways and sustaining the
heterogeneous nearshore benthic community of Fildes Bay.

The objective of this study is to explore the trophic links between primary food sources
(suspended and sinking particulate organic matter, superficial sediment organic matter
and macroalgae) and consumers, using stable isotope ratios (\(\delta^{13}C\) and \(\delta^{15}N\)) and
Bayesian statistical approaches. We tested the general hypotheses that lower and upper
level consumers in Fildes Bay rely on multiple energy pathways, with a predominance
of organic material derived from fresh (macroalgae) and surface sediment organic
matter and, to a lesser extent, pelagic primary food sources.

2. Material and methods

2.1. Study area

This study was conducted in Fildes Bay, off the southwestern end of King George
Island, in the South Shetland Islands (Fig. 1). Local hydrography is influenced by an
inflow of oceanic water from Bransfield Strait (Khim et al., 1997) and local-origin
water from melting glaciers and river runoff (Hong et al., 1991; Khim et al., 1997;
Khim and Yoon, 2016). Despite extreme environmental conditions and the effect of
winter sea surface ice, the benthic community of Fildes Bay is characterized by highly
abundant and diverse macroinvertebrates and macroalge (Valdivia et al., 2014;
Aghmich et al., 2016). Specifically, the subtidal zone is dominated by brown and red
microalgae, along with several species of fishes, scavengers, grazers, sponges,
bryozoans, and ascidians; the intertidal zone is dominated by amphipods, littorinid
snails, littorinid snails, crustose algae, and several small, opportunistic macroalgae (mostly filamentous green algae) (Valdivia et al., 2014; Segovia-Rivera and Valdivia, 2016).

2.2. Primary food sources

To evaluate the contribution of different energy sources, samples of representative benthic and pelagic food sources were collected in austral summer (January–February 2017) in Fildes Bay (Fig. 1, Table 1). Benthic primary food sources included subtidal and intertidal macroalgae and surface sediment organic matter (OM). Pelagic primary food sources included suspended particulate organic matter (POM) and sinking POM.

Subtidal macroalgae were collected by SCUBA diving along ten transects; samples were taken using a portable underwater venture-suction device equipped with a 20-um mesh size at station C (Fig. 1), a rocky shore on the northern margin of Fildes Bay (depth < 30 m). Intertidal macroalgae were hand-picked at Station B (Fig. 1).

For surface sediment OM, five cores were collected from the upper 3 cm layer by SCUBA diving, separated by at least 4 m. These samples were collected at subtidal station 5 (Fig. 1), along the 20 m isobaths. Macroalgae and surface sediment OM were washed with distilled water and frozen in a cold-room below -20°C.

A 10-L go-flo bottle was used to sample suspended POM at 5-m depth, whereas sediment traps were used to collect sinking POM at 50-m depth (Fig. 1). Both suspended and sinking POM were collected by filtering seawater through a pre-
combusted (4 h, 550ºC), 47-mm, GF/F glass fiber filter (0.7-μm pore size), until the flow of water decreased to a slow drip. Then the filters were frozen at −20 °C until the next treatment.

2.3. Consumers

Invertebrates and fishes were collected from intertidal and subtidal sites (depth < 30 m) off the north coast of Fildes Bay (Fig. 1). Subtidal invertebrates were collected by SCUBA diving, following the underwater venture-suction explained above, whereas intertidal organisms (*N. concinna*) were hand-picked during the diurnal low tide at Station B (Fig. 1). Invertebrates were kept alive for 24 h in the laboratory to allow evacuation of gut contents, then sorted and frozen (-20ºC) until analysis. Subtidal fishes were collected using lines fishing with different baits (e. g. pork, chicken, clams), and then individually sealed in plastic bags and frozen (-20ºC). Invertebrates were sorted and identified to the lowest taxonomic classification possible. Fishes were identified to the species level using DNA barcoding (Hebert and Gregory, 2005). Genomic DNA was extracted from fish using a commercial kit (Omega E.Z.N.A.), and the mitochondrial gene cytochrome c oxidase subunit I (COI) was amplified using the primers described by Folmer et al. (1994). PCR products were sent for sequencing to Macrogen, Korea (www.macrogen.com), and phylogenetic reconstructions were performed using the neighbor-joining and maximum likelihood algorithms in Mega7 (Kumar et al., 2016). Finally, sequences of fishes used in this study were deposited into the GenBank database.

2.4. Stable isotope analysis
In the laboratory, filters with pelagic primary food sources, surface sediment OM, and macroalgae samples were dried at 60°C for 36–48 h in an oven and then acidified for the removal of carbonate by wetting the filters with 1 mL 0.5 M hydrochloric acid (HCl). Consumers were thawed with distilled water, dried in an oven at 60°C for 36–48 h, and ground to a fine powder with a mortar and pestle. Soft tissues were collected from sea stars, fishes, nemerteans, and mollusks. For small invertebrates (e.g., amphipods and some mollusks with body length < 100 mm), the entire organisms were analyzed, and roughly ten whole organisms constituted a single replicate sample.

Lipids were extracted from fish and invertebrate samples with a chloroform/methanol (2:1) solution (Bligh and Dyer, 1959). This is because, compared with other molecules, lipids are depleted in 13C (DeNiro and Epstein, 1978) and their concentration in tissues may vary between and within species. On the other hand, high concentrations of inorganic carbon in some invertebrate exoskeletons may cause undesirable variability in δ^{13}C (Lorrain et al., 2003). Thus, each sample was divided into two aliquots, and calcium carbonate was removed by soaking subsamples in 0.5 M hydrochloric acid (HCl) until the CO$_2$ was completely depleted (Newsome et al., 2006). Since this HCl treatment adversely affects the δ^{15}N values (Bunn et al., 1995), the remaining aliquot was left untreated for δ^{15}N analyses.

Approximately 10 - 15 mg of POM with filter, 0.8 - 1.0 mg of algae, 0.3 mg of mollusk mantle and fish muscle, and 0.3 - 0.5 mg of entire crustaceans were weighed into sterilized tin capsules and analyzed for dual stable carbon and nitrogen isotopes. Each pre-treated sample was combusted in a Thermo elemental analyzer integrated with an
isotope ratio mass spectrometer. All the consumers and benthic primary food sources were analyzed at the Pontificia Universidad Católica de Chile (Flash EA200 IRMS Delta Series, Thermo Scientific, Germany), and the pelagic primary food sources were analyzed at the University of California Davis, using an Elementar Vario EL Cube or Micro Cube elemental analyzer (Elementar Analys en systeme GmbH, Hanau, Germany) interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK).

Stable isotope ratios were reported in standard (δ) notation using the following equation:

\[\delta X = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000 \]

(1)

where \(X \) is either \(^{13}\text{C} \) or \(^{15}\text{N} \), \(R \) is the ratio of heavy to light isotopes, and the standard is either PDB for \(^{13}\text{C} \) or atmospheric N\(_2\) for \(^{15}\text{N} \). The reproducibility, as determined by the standard deviation of the internal standards, was ± 0.18‰ and 0.30‰ for \(\delta^{15}\text{N} \) and \(\delta^{13}\text{C} \), respectively.

2.5. Trophic position

Nitrogen stable isotope ratios at the base of the food-web are needed to estimate the trophic position (TP) of the consumers. Because \(\delta^{15}\text{N} \) values of primary producers are
strongly influenced by spatial temporal parameters (Post, 2002; Iken et al., 2010; Miller and Page, 2012), our baseline TPs were calculated using δ^{15}N values of *Laternula elliptica*, a suspensivore bivalve and primary consumer (i.e. assumed to occupy TP = 2) of phytoplankton (Brockington, 2001), and *Laevilacunaria antarctica*, a herbivorous gastropod that consumes mainly macroalgae (Iken, 1999).

Since outputs from the 1- and 2-source TP models (see Post 2002) were similar, the following 1-source TP model was applied for all individuals:

$$TP_{consumer} = \left(\frac{\delta^{15}N_{consumer} - \delta^{15}N_{base}}{\Delta \delta^{15}N}\right) + TP_{base}$$

where the mean δ^{15}N of *L. elliptica* was used as the baseline and represented a TL$_{base}$ of 2. A value of 2.3‰ was used for trophic enrichment, $\Delta \delta^{15}$N (McCutchan et al., 2003).

2.6. Data analyses

After calculating the isotopic mean values and standard deviations (SD) of the consumers and primary food or carbon sources (Table 1, Fig. 2), we tested normality and homoscedasticity of residuals with the Lilliefors and Levene tests, respectively. For multiple comparisons, the data sets did not meet the normality and homoscedasticity requirements; thus, the non-parametrical Kruskal-Wallis test was used. In addition, we used a paired-samples t-test to compare the means between trophic groups and primary food sources considering the assumptions of the t-test. These analyses were carried out with PASW Statistics (version 17.0 for Windows, SPSS). Significance was assumed at 0.05.
To estimate the relative contribution of primary food sources to each species studied (Parnell et al., 2010), we used the upgrade function `simmr` from the package Stable Isotope Mixing Models within R. This upgraded version of the SIAR package contains a slightly more sophisticated mixing model that allows realistic assessments and discerning source contributions to a mixture (Parnell, 2016). Models were built over four Markov chains with 10,000 steps per chain and a burn-in of 1000 iterations. Data within each group fitted a normal distribution, as required by SIAR (Parnell et al., 2010).

The fractionation factor (Δ) is a critical aspect in reconstructing diets and trophic web structures (Post, 2002). This is especially true for species inhabiting Antarctic ecosystems because few controlled feeding studies exist for these organisms, often making it particularly challenging to discern metabolic issues of isotopic incorporation. On the other hand, trophic position is one of the main factors influencing Δδ¹⁵N values (DeNiro and Epstein, 1981; Minagawa and Wada, 1984). Thus, we compared used our own empirical observations with Δ calculated by meta-analyses (McCutchan et al., 2003) to obtain appropriate measurements of quantitative interactions between consumers and sources. For this, we used linear mixing models with a fractionation factor multiplied by the number of trophic positions (obtained by equation 2) between the consumer and the basal resources to simulate the proportions of each food source in the consumer diet (Phillips et al., 2014). We assessed the differences in δ¹⁵N values between phytoplankton (POM at a 5-m depth) and the primary consumer, *L. elliptica*, to obtain the trophic shifts for δ¹⁵N values of Fildes Bay baseline. Our empirically observed Δ¹⁵N (mean ± SD = -1.3 ± 0.2‰) fell within the fractionation factor range
prescribed for lower trophic consumers (mean ± SD = -1.4 ± 0.2‰) by McCutchan et al. (2003). Consequently, we used their suggested Δ\(^{15}\)N and propagated the Δ according the trophic position obtained by equation 1 (mean ± SD; TP2 = 1.4 ± 0.2‰; TP3 = 2.8 ± 0.4‰; TP4 = 4.2 ± 0.6‰; TP5 = 5.6 ± 0.8‰).

The mean Δ\(^{13}\)C obtained from the differences in δ\(^{13}\)C values between potential primary food sources and consumers was smaller than Δ\(^{15}\)N values among trophic levels. For that reason, we used the general Δ\(^{13}\)C (mean ± SD = 0.5 ± 0.2‰) obtained by McCutchan et al. (2003) for different species.

Finally, to analyze the overall contribution of the main energy pathways sustaining the nearshore benthic Antarctic communities (Kaehler et al., 2000; Dunton, 2001; Norkko et al., 2007; Gillies et al., 2013), we grouped the primary food sources collected in: (1) pelagic primary food sources (suspended and sinking POM), (2) surface sediment organic matter, and (3) macroalgae (intertidal and subtidal macroalgae). Moreover, for this analysis, species were assigned trophic groups according to the literature (Table 1), their trophic position, and a hierarchical cluster analysis using the mean values of each species (Fig. 3).

3. Results

3.1. δ\(^{13}\)C and δ\(^{15}\)N of food sources and consumers

The composition of both carbon and nitrogen stable isotopes differed significantly among sources (Kruskal-Wallis test; δ\(^{13}\)C: χ\(^{2}\) = 28.327, df = 4, p < 0.01; δ\(^{15}\)N: χ\(^{2}\) =
10.338, df = 4, p < 0.05). For macroalgae, the mean δ^{13}C values varied widely from -20.8‰ (Iridaea cordata) to -13.9‰ (Adenocystis utricularis) (Fig. 2, Table 1), with significant differences between intertidal and subtidal macroalgae (paired t test; p < 0.000). Macroalgae were significantly more enriched in ^{13}C than pelagic and surface sediment OM primary food sources (paired t test; p < 0.001 and p < 0.01, respectively). The δ^{13}C values of sinking POM ranged from -23.3‰ to -20.5‰, with a mean of -21.8‰; this was significantly lower than the suspended POM values (paired t test; p < 0.01). The δ^{13}C values of surface sediment OM were quite uniform within the group (standard deviations < 1%), and no difference was found among surface sediment OM and pelagic primary food sources (t = -0.630, p > 0.05) (Fig. 2, Table 1).

The mean δ^{15}N values of primary food sources ranged from 2.5‰ (pelagic primary food sources) to -3.8‰ (surface sediment OM) (Fig. 2, Table 1). The pelagic primary food sources were distinctly more ^{15}N-depleted (mean ± SD = 2.5 ± 0.7‰) than the macroalgae (paired t test; p < 0.001) and surface sediment OM (paired t test; p < 0.001). Macroalgae and surface sediment OM (including microorganisms and detritus) had more similar signatures (3.5 ± 0.9‰ and 3.8 ± 0.6‰, respectively); no significant differences were detected between groups.

Most δ^{15}N-depleted values were observed in the pelagic primary food sources (mean ± SD = 2.5 ± 0.7‰) and were significantly lower than macroalgae and surface sediment OM values. In addition, we detected a slight depth-related variation for pelagic food sources, with more ^{15}N-enriched in sinking POM than suspended POM, and also a sharp variation in δ^{15}N values between intertidal (4.0 ± 1.6‰) and subtidal macroalgae (3.4 ± 1.0‰).
Overall, these significant differences between groups support the premise of multiple energy sources for macrobenthic consumers in Fildes Bay.

A total of 98 consumers were sampled in Fildes Bay, covering a wide range of taxonomic groups (Table 1, Fig. 2). The consumers exhibited significant differences for both $\delta^{13}C$ and $\delta^{15}N$ values (Kruskal-Wallis test; $\delta^{13}C$: $\chi^2 = 85.044$, $df = 4$, $p < 0.01$; $\delta^{15}N$: $\chi^2 = 92.186$, $df = 15$, $p < 0.01$).

Diet was used to sort species into seven different feeding groups: predatory fishes, predatory invertebrates, scavenger amphipods, subtidal grazers, intertidal grazers, herbivore amphipods, and suspensivores (Table 1, Fig. 2). A cluster analysis confirmed this classification (Fig. 3). Scavenger amphipods, herbivore amphipods, and subtidal grazers displayed more isotopic variability than the other groups, which showed quite similar isotopic signatures within each feeding group (paired t-test; $p > 0.01$).

The $\delta^{13}C$ values of all consumers were distributed over a wide range, from -21.9‰ ($B. gigantea$) to -13.9‰ ($N. concinna$). The scavenger amphipods showed the widest range of $\delta^{13}C$ values (-18.1‰ ± 3.2), followed by predatory fishes (-20.0‰ ± 2.1), and predatory invertebrates (-21.4‰ ± 1.0). In terms of $\delta^{15}N$ signatures, the consumers ranged from 3.7‰ ($L. elliptica$) to 11.1‰ ($H. antarcticus$) (Table 1. Fig. 2). The predatory fishes showed the widest range of $\delta^{15}N$ (10.4‰ ± 0.9), followed by the predatory invertebrates (7.0‰ ± 0.8).
Finally, we found that predatory fishes and the predatory sea star occupied the upper trophic level (TP5-TP4), whereas scavenger amphipods, predatory invertebrates, grazers, and suspensivores occupied the range of TP3-TP2 (Fig. 4).

3.2. Relative contribution of food sources to consumers

Assimilation of δ^{13}C and δ^{15}N derived from pelagic and benthic trophic pathways differed among consumers in Fildes Bay (Fig. 5). Overall, The SIAR output showed that, for most consumers analyzed, contributions of surface sediment OM and macroalgae tended to prevail over pelagic primary food sources (Fig. 4). The predatory fishes, *N. coriiceps* and *N. rossii*, derived a high proportion of their diets (> 50%) from surface sediment OM (Fig. 5a, b). Conversely, *H. antarcticus* derived over 80% of its isotopic signature from the intertidal macroalgae, *A. utricularis* (Fig. 5c). The predatory invertebrate, *O. validus*, showed a similar proportion of food sources, although surface sediment OM was slightly larger (Fig. 5d). Similarly, surface sediment OM played a major role in the diets of *P. corrugatus* (Fig. 5e) and *B. gigantea* (Fig. 5g).

Scavenger amphipods showed a marked variation in the proportion of primary food sources making up their diets. Whereas *G. antarctica* (Fig. 5i) and *P. miersii* (Fig. 5h) mainly assimilated pelagic sources, *Ch. femoratus* mainly assimilated intertidal macroalgae (Fig. 5f).

At lower trophic levels, grazers and herbivore amphipods received > 60% of their diet from macroalgal material. On the contrary, as expected, the suspensivores (*L. elliptica* and *K. bicolor*) derived a high proportion of their diets from pelagic food sources.
4. Discussion

The overall evidence reported here indicates that, currently, the nearshore benthic community of Fildes Bay assimilates different primary food sources, revealing a system sustained by multiple pathways of organic matter, but with variable degrees of benthopelagic coupling depending on the consumers’ trophic positions. These results are consistent with previous studies of shallow benthic Antarctic communities (e.g. Kaehler et al., 2000; Dunton, 2001; Norkko et al., 2007; Gillies et al., 2013). Although some primary food sources were not assessed in this study, our results certainly reflect the main energy pathways believed to sustain the macrobenthic marine communities off Antarctica, namely pelagic primary food sources, surface sediment OM, and macroalgae primary food sources (Kaehler et al., 2000; Dunton, 2001; Norkko et al., 2007; Gillies et al., 2013).

4.1. Surface sediment organic matter (OM) as a food source for upper trophic levels

The dominant energy channel in the upper trophic level was the surface sediment OM and, to a lesser degree, macroalgae and pelagic primary food sources. Similar patterns have been observed in other regions off Antarctica (Norkko et al., 2007), suggesting that sediment OM is an important source of detritus to higher trophic levels, contributing strongly to bottom-up controls and dampening seasonality. The mineralization and utilization of C by microbial communities depletes the δ^{13}C values of surface sediment OM (Hollander and Smith, 2001). Similarly, it is also highly likely that bacterial degradation increases δ^{15}N values (Macko and Estep, 1984). Surface sediments from the Antarctic Peninsula are characterized by high nutrient contents and
a large presence of diatoms (e.g. Chaetoceros), Bacteroidetes, and Cercozoan (Learman et al., 2016), which can, in turn, benefit upper consumers via trophic mediation. For instance, Norderhaug et al. (2003) experimentally showed low C:N ratios in decomposed macroalgae due to decreased phytotoxin concentrations. Similarly, Norkko et al. (2004) reported that fragmentation and bacterial degradation facilitates the entrance of accumulated Phyllophora antarctica drifts into the food web in McMurdo Sound, but with a slow degradation rate due to the cold temperatures (Brouwer, 1996). These results are demonstrating that high nutrient concentrations and microbial activity in sediments constitute a relevant component of benthic food webs in these low-temperature ecosystems.

Stable isotope ratios of some predatory invertebrates (P. corrugatus, B. gigantea) and predatory fishes (N. coriiceps, N. rossii) were clearly coupled with the surface sediment OM. The overlaps observed among surface sediment OM, pelagic primary food sources, and macroalgae suggest a mixing of detrital and fresh organic matter derived from phytoplankton and macroalgal material. Thus, it is likely that these predatory invertebrates and fishes are consuming prey that feed on a mix of fresh and detrital material accumulating in the surface sediment.

Fishes are usually more mobile than their prey, which allows them to integrate different energy pathways originating in different foods sources. Accordingly, the high contribution of surface sediment OM (> 50%) in the N. rossii diet may be related to the wider home range observed for this species (Burchet, 1983; Barrera-Oro and Winter., 2008). On the other hand, for N. coriiceps, a cryptic species (Casaux et al., 1990), the integration of different sources of OM could be associated with an efficient detritivore pathway. The macroalga, A. utricularis, contributes heavily to the H. antarcticus diet,
suggesting a lower integration of different energy sources likely related to the species’ specialist feeding behavior and narrow home range: under rocks on the seafloor of the Antarctic Peninsula (Casaux, 1998).

4.2. The polyphagous nature of scavenging amphipods

Stable isotope ratios varied widely for scavenger amphipods, confirming the high diversity of feeding modes in this taxon (Dauby et al., 2001; Amsler et al., 2014). Specifically, the broad range of $\delta^{13}C$ values recorded here reflects the selection of different food sources based on scavenger amphipod foraging locations (Amsler et al., 2004; Aumack et al., 2017). Paracerodocus miersii and G. antarctica displayed depleted $\delta^{13}C$ values, indicating the importance of pelagic prey items, but macroalgae also comprised a significant portion of the G. Antarctica diet. Actually, digestive tract analyses revealed that diatoms contributed 50% of the G. antarctica diet (Aumack et al., 2017). Consistent with our results, previous isotopic measurements also revealed less enriched $\delta^{13}C$ values for this species, associated with the consumption of the subtidal macroalgae, P. decipiens (Dunton, 2001; Aumack et al., 2017). Interestingly, our results showed a strong link between C. femoratus, a scavenger amphipod, and A. utricularis, an abundant macroalgae in the Fildes Bay intertidal zone (Aghmich et al., 2016), underscoring the opportunistic feeding behavior of this Antarctic amphipod (Bregazzi, 1972). Furthermore, this result agrees with controlled-diet experiments, in which A. utricularis was more palatable to C. femoratus than to G. skottsbergii and P. decipiens (Núñez-Pons et al., 2012).

4.3. The role of macroalgal and pelagic primary food sources in lower trophic levels
At the lower trophic levels, the dominant energy pathways were macroalgae and pelagic food sources. Benthic suspensivore organisms were clearly separated from the other consumers on the $\delta^{13}\text{C}$ axis, showing a stable isotope ratio similar to those of pelagic food sources and, to a lesser extent, surface sediment OM. This is consistent with previous records (e.g. Barnes and Clarke, 1995; Ahn, 1997; Gili et al., 2001).

Regional variability in food available for benthic suspensivores is closely tied to oceanographic processes (Barnes and Clarke, 1995). For instance, Ahn (1997) found that benthic diatoms are the dominant food supply for L. elliptica in summer, whilst smaller-sized plankton fractions and resuspended sediment dominate in winter. The high $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values of pelagic primary food sources found here were among the highest recorded for the Antarctic Peninsula (e.g. Wada et al., 1987), most likely a consequence of the massive diatom blooms (chlorophyll > 30 mg m$^{-3}$) and high primary production rates (e.g. 6.28 gC d$^{-1}$ m$^{-2}$) recorded within Fildes Bay during January 2017 (Höfer et al., in this volume). Furthermore, we found significant differences between the $\delta^{13}\text{C}$ values of suspended and sinking POM, which could be explained by different successional stages of the phytoplankton bloom (Ostrom et al., 1997), with benthic suspensivores heavily assimilating the ^{13}C-depleted sinking POM. On the other hand, contributions of surface sediment OM in suspensivore diets suggest persistent resuspension of organic material by winds or iceberg scouring in Fildes Bay (Brandini and Rebello, 1994).

As in other studies in Antarctic waters (Corbisier et al., 2004; Norkko et al., 2007; Gilles et al., 2012; Aumack et al., 2017), ^{13}C enrichment was higher in macroalgae than
in the other analyzed sources, although some overlapping occurred with suspended POM. This overlap could be explained by the incorporation of the 13C depleted from epiphyte/endophyte species (e.g. green algae filament, phaeophytes, and diatoms) growing in macroalgal tissues (e.g. Aumack et al., 2017).

Stable isotope ratios of gastropod grazers and herbivore amphipods were closely aligned with the enriched δ^{13}C values of macroalgal primary food sources, confirming that most of the carbon utilized by these organisms is derived from benthic production. Aumack et al. (2017) reported patterns of quantitative interactions in macroalgae and Antarctic amphipods at different sites near Anvers Island (Antarctic Peninsula) using isotopic measurements and gut contents. This study showed that macroalgal material (both filamentous and multiseriate) comprise a significant portion of the amphipod assemblage’s diet, but also that benthic diatoms are a significant dietary element for most amphipods. Nevertheless, the accidental ingestion of frustules probably inflates these percentages (Dauby et al., 2001). In any case, the overall evidence indicates a prevalence of macroalgae over surface sediment and pelagic sources as primary food sources for gastropod grazers and herbivore amphipods. Nonetheless, on a seasonal scale, the melting/freezing regime may considerably influence biomass production and species composition in macroalgal assemblages (Clark et al., 2013), leading to qualitative and quantitative differences in individual interactions of benthic food webs. Hence, further studies are necessary to elucidate shifts in the trophic connections of these heterogeneous assemblages of the Antarctic Peninsula.

4.4. A cautionary note and future directions
Our assessment of the assimilation of primary food sources by consumers is based on the assumption that the analysis of a relatively small number of food sources can be extrapolated to build generalizations of trophic pathways. Thus, a number of confounding factors should be considered. Firstly, this approach can lead to biased conclusions because of a low sampling effort of other potential primary food sources (e.g. the microphytobenthos, benthic diatoms, allochthonous material, and filamentous algae). Secondly, spatial variability in advection processes, or increased deposition, can affect the assimilation of food sources by consumers, especially in hydrographically complex areas (Tu et al., 2015). Finally, turnover times and the fractionation factor may affect variations of isotopic composition among consumers (Tieszen et al., 1983; Hobson et al., 1995; Post, 2002). Consequently, additional work combining isotopic composition, grazing experiments, and fatty acid analyses is needed to tease out the complex trophic links mobilizing primary nutrients from basal food sources to this consumer (Layman et al., 2012).

4.5. Conclusion

In summary, our work shows that the primary food sources analyzed can flow through multiple pathways across the benthic food web of Fildes Bay, with upper trophic consumers receiving most energy from surface sediment OM, and lower trophic consumers supported mainly by macroalgae and pelagic primary food sources. In addition, this is the first attempt to apply quantitative Bayesian methods to the study of the nearshore benthic community in Fildes Bay, and it certainly advances knowledge of the mechanisms that determine the resistance of local communities to environmental disturbances.
Acknowledgements

The authors acknowledge financial support from the grants INACH RG 20-16, Fondecyt 1161129, and FONDAP IDEAL 15150003. Thanks to Paulina Brüning, Mateo Cáceres, Hans Bartsch, and Bastian Garrido for field assistance: both diving and laboratory work. Logistical support provided by the Instituto Antártico Chileno (INACH) and the staff of Base Julio Escudero Station, King George Island, is greatly appreciated. The studies in the Antarctic were carried out under permission granted by INACH in accordance with the Protocol on Environmental Protection to the Antarctic Treaty. The study did not involve Antarctic Specially Protected Areas (ASPAs), nor sampling of protected or endangered species.
References

Jacob, U., Brey, T., Fetzer, I., Kaehler, S., Mintenbeck, K., Dunton, K., Beyer, K.,

food web at the Prince Edward Islands (Southern Ocean) determined by δ C-13

Khim, B.K., Park, B.K., Yoon, H.I., 1997. Oxygen isotopic compositions of seawater in
the Maxwell Bay of King George Island, West Antarctica. Geosciences Journal,
1, 115 - 121.

Khim, B.K., Yoon, H.I., 2003. Postglacial marine environmental changes in Maxwell
Bay, King George Island, West Antarctica. Polar Research, 22, 341-353.

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics
Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33,
1870-1874.

Layman, C.A., Araujo, M.S., Boucek, R., Hammerschlag-Peyer, C.M., Harrison, E.,
Bearhop, S., 2012. Applying stable isotopes to examine food-web structure: An
overview of analytical tools. Biological Reviews, 87, 545-562.

Learman, D.R., Henson, M.W., Thrash, J.C., Temperton, B., Brannock, P.M., Santos,
Variation across 5500 km of Antarctic Surface Sediment Implicates Organic

composition at sub-mesoscale: Spatial distance or environmental filtering?

FEMS Microbiology Ecology, 92.

Parnell, A.C., 2016. simmr: A stable isotope mixing model. R package version 0.3.

Wada, E., Terazaki, M., Kabaya, Y., Nemoto, T., 1987. 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web.

Figure Captions

Figure 1. Locations of sites where food sources and consumers were sampled for stable isotopes. The solid circles show consumer sites (A = predatory fishes, predatory invertebrates; B = intertidal grazer; C = subtidal grazer, scavenger amphipods, herbivore amphipods, suspensivores) and the triangles denote food source sites (1 = suspended POM; 2 = suspended POM and sinking POM; 3 = subtidal macroalgae; 4 = intertidal macroalgae; 5 = surface sediment OM).

Figure 2. Bivariated stable isotope ratios of consumers and their potential food sources from Fildes Bay, Antarctic Peninsula.

Figure 3. Dendrogram produced using hierarchical cluster analysis for mean (± 1 SD) δ^{13}C and δ^{15}N values of all studied species in the benthic community off Fildes Bay (South Shetland Island, Antarctic Peninsula).

Figure 4. Summary of energy pathways in the Fildes Bay benthic community, according to SIAR mixing model (simrr).

Figure 5. Dietary composition of the species according to the SIAR mixing model (simmr). Boxplots represent the 95% credible interval of primary food sources assimilation for each consumer. The centerline in the box is the median of all solutions, and the box is drawn around the 25th and 75th quartiles, thereby representing 50% of
the solutions. The $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values of consumers were corrected for the
discrimination factor so that they could be compared to the source values.
Table 1. δ^{15}N and δ^{13}C values (mean ± SE) of taxa collected from Fildes Bay.

<table>
<thead>
<tr>
<th>Taxonomic group or species</th>
<th>n</th>
<th>δ^{13}C (‰)</th>
<th>δ^{15}N (‰)</th>
<th>Feeding strategies /Trophic group</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinking POM</td>
<td>6</td>
<td>-21.8 ± 1.0</td>
<td>2.6 ± 0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspended POM</td>
<td>2</td>
<td>-19.8 ± 0.1</td>
<td>2.4 ± 0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface sediment POM</td>
<td>5</td>
<td>-21.0 ± 0.6</td>
<td>3.8 ± 0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroalgae</td>
<td>25</td>
<td>-17.8 ± 2.1</td>
<td>3.8 ± 1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocystis utricularis</td>
<td>5</td>
<td>-14.3 ± 0.3</td>
<td>4.0 ± 1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iridaea cordata</td>
<td>5</td>
<td>-20.3 ± 0.5</td>
<td>3.5 ± 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmaria decipiens</td>
<td>5</td>
<td>-18.5 ± 0.5</td>
<td>2.4 ± 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monostroma hariotii</td>
<td>5</td>
<td>-18.5 ± 0.9</td>
<td>3.9 ± 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gigartina skottsbergii</td>
<td>5</td>
<td>-17.9 ± 0.8</td>
<td>5.5 ± 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nemertea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parborlasia corrugatus</td>
<td>5</td>
<td>-21.4 ± 0.7</td>
<td>6.5 ± 0.5</td>
<td>Deposit Feeder/Predatory invertebrate</td>
<td>Gibson, 1983</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalvia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laternula elliptica</td>
<td>5</td>
<td>-20.3 ± 0.3</td>
<td>3.8 ± 0.2</td>
<td>Suspensivore</td>
<td>Brockington, 2001</td>
</tr>
<tr>
<td>Kidderia bicolor</td>
<td>5</td>
<td>-21.7 ± 0.3</td>
<td>4.0 ± 0.2</td>
<td>Suspensivore</td>
<td>Marni, 1885</td>
</tr>
<tr>
<td>Gastropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nacella concinna</td>
<td>5</td>
<td>-13.9 ± 0.7</td>
<td>6.9 ± 0.2</td>
<td>Grazer (Intertidal)</td>
<td>Clark et al., 2004</td>
</tr>
<tr>
<td>Laevilacunaria antarctica</td>
<td>4</td>
<td>-16.5 ± 0.2</td>
<td>5.5 ± 0.2</td>
<td>Grazer (Subtidal)</td>
<td>Iken, 1999</td>
</tr>
<tr>
<td>Margarella antarctica</td>
<td>5</td>
<td>-18.3 ± 0.3</td>
<td>5.9 ± 0.3</td>
<td>Grazer (Subtidal)</td>
<td>Gutt and Schickan, 1998</td>
</tr>
<tr>
<td>Echinodermata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asteroidea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontaster validus</td>
<td>5</td>
<td>-20.6 ± 1.4</td>
<td>7.6 ± 0.9</td>
<td>Deposit Feeder/Predatory invertebrate</td>
<td>Dearbon, 1977</td>
</tr>
<tr>
<td>Arthropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bovallia gigantea</td>
<td>5</td>
<td>-21.8 ± 0.4</td>
<td>6.6 ± 0.4</td>
<td>Carnivore/Predatory invertebrate</td>
<td>Bone, 1972</td>
</tr>
<tr>
<td>Cheirimedon femoratus</td>
<td>6</td>
<td>-14.7 ± 0.6</td>
<td>4.4 ± 0.6</td>
<td>Omnivore/Scavenger amphipod</td>
<td>Seefeldt et al., 2017</td>
</tr>
<tr>
<td>Gondogeneia antarctica</td>
<td>3</td>
<td>-19.4 ± 0.2</td>
<td>5.9 ± 0.3</td>
<td>Omnivore/Scavenger amphipod</td>
<td>Aumack et al., 2017</td>
</tr>
<tr>
<td>Djerboa furcipes</td>
<td>5</td>
<td>-16.9 ± 0.3</td>
<td>4.8 ± 0.2</td>
<td>Hervibore amphipod</td>
<td>Nyssen et al., 2005</td>
</tr>
<tr>
<td>Prostebbingia gracilis</td>
<td>5</td>
<td>-18.7 ± 0.7</td>
<td>4.0 ± 0.4</td>
<td>Hervibore amphipod</td>
<td>Zamzow et al., 2010</td>
</tr>
<tr>
<td>Paracerodocus miersii</td>
<td>5</td>
<td>-21.5 ± 0.6</td>
<td>4.8 ± 0.2</td>
<td>Scavenger/Benthic consumer</td>
<td>Obermüller et al., 2013</td>
</tr>
<tr>
<td>Chordata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertebrata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nothotenia rosii</td>
<td>16</td>
<td>-21.6 ± 1.2</td>
<td>10.0 ± 0.5</td>
<td>Omnivore/Predatory Fish</td>
<td>Barrera-Oro and Winter, 2008</td>
</tr>
<tr>
<td>Nothotenia coriiceps</td>
<td>13</td>
<td>-20.0 ± 0.8</td>
<td>10.9 ± 0.8</td>
<td>Omnivore/Predatory Fish</td>
<td>Daniels, 1982</td>
</tr>
<tr>
<td>Harpagifer antarcticus</td>
<td>8</td>
<td>-16.7 ± 0.7</td>
<td>11.1 ± 0.6</td>
<td>Omnivore/Predatory Fish</td>
<td>Blankley, 1982</td>
</tr>
</tbody>
</table>
HIGHLIGHTS

- Nearshore benthic Antarctic community in Fildes Bay assimilates different primary food sources.

- Benthopelagic coupling depend on the consumers’ trophic positions.

- The energy channelled to upper trophic consumers comes from organic matter in the surface sediment.

- For lower trophic consumers energy channelled comes from macroalgae and pelagic primary food sources.

- Additional work combining isotopic composition, grazing experiments, and fatty acid analyses is needed to tease out the assimilation of primary food sources to consumers.