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Global stressors like ocean acidification (OA) are expected to influence the quality or palatability of primary pro-
ducers like algae. Such changes can trigger a response on algal consumers' feeding strategies, and this response
may not necessarily be the same for the consumers during the ontogeny. We used a mesocosm's system to ex-
pose algae to current and projected OA conditions (390 and 1000 ppm, respectively) and then compared the
feeding behavior and absorption efficiency of juvenile and adult stages of the amphipod Orchestoidea tuberculata.
Specifically, wemeasured consumption rates (with andwithout a choice) and absorption efficiency on algae ex-
posed and not exposed to OA. Our results show that OA affect the amphipod's consumption and feeding prefer-
ences, and that these effects were related with the analyzed ontogenetic stage (juveniles versus adults). These
results support the existence of an ontogenetic change in the response of this species and others similar marine
invertebrates to OA,which highlight the need to incorporate different life stages in the study of OAor others glob-
al stressors.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Near a third of all the CO2 produced by human activities during the
last two centuries has been absorbed by the ocean (Sabine et al.,
2004). This has triggered a chemical process called ocean acidification
(OA), a global stressor with widespread consequences for a myriad of
calcifying organisms (Cooley and Doney, 2009; Nienhuis et al., 2010).
Less known but equally important are the adverse effects of OA on ma-
rine non-calcifying organisms like algae (Mohite andWakte, 2011; Jiang
et al., 2010). In these organisms the OA alters their photosynthetic rates,
nutritive value, and metabolic processes (Xu et al., 2010; Gutow et al.,
2014; Duarte et al., 2016). These changesmay affect algal quality or pal-
atability (Poore et al., 2013; Falkenberg et al., 2013; Gutow et al., 2014)
and alga-herbivore interactions (O'Connor, 2009; Duarte et al., 2016). In
fact, few studies have already shown that algal changes caused by OA
can alter herbivore's feeding strategies (Poore et al., 2013; Falkenberg
et al., 2013; Duarte et al., 2016).
ía y Biodiversidad, Facultad de
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While a growing number of studies has focused on the effects of OA
on different species, lesser attention has been given to evaluate the in-
traspecific variability (among different populations or ontogenetic
stages within of a same species) in the responses to OA. This is surpris-
ing considering that wide intra-specific variation should be expected
from OA, and therefore, its study is critical to understand the complex
role of this stressor (Tomanek, 2010; Byrne, 2011; Kremp et al., 2012;
Duarte et al., 2016). Marine invertebrate herbivores, for example, have
a broad repertoire of feeding strategies to adjust for changes in the
algae they consume (Cruz-Rivera and Hay, 2003; Duarte et al., 2011).
These organisms optimize their diet by choosing the most nutritive
alga (Pennings et al., 1993; Barile et al., 2004; Duarte et al., 2010,
2014), or by increasing the consumption rate (compensatory feeding;
Cruz-Rivera and Hay, 2001) or the absorption efficiency (Simpson and
Simpson, 1990) of lower quality algae. Talitrid amphipods are abundant
and widespread consumers, likely ideal to study such strategies and
their potential alteration by stressors like OA. For instance, juvenile
and adult individuals of Talorchestia capensis differ in consumption
rates (Muir, 1977), whereas juvenile and adult of Talitrus saltator exhibit
distinct energetic requirements (Scapini et al., 1992). We argue that
changes in food quality resulting from OA should prompt a response
ding behavior of amarine amphipod in response to ocean acidification,
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in feeding behavior that may not necessarily be the same across differ-
ent ontogenetic stages.

The amphipod Orchestoidea tuberculata has an ubiquitous presence
along the south-east Pacific shorelines and is an avid consumer of the
brown alga Durvillaea antarctica (Duarte et al., 2010, 2011). A previous
study has reported that OA reduces the quality of D. antarctica and affect-
ed the feeding behavior of juvenile individuals ofO. tuberculata (Duarte et
al., 2016). However, we ignore if the changes induced on the algae would
prompt a similar response on adult individuals O. tuberculata. Hence, in
this study we replicated a previous study (Duarte et al., 2016) using a
mesocosm system for simulating OA (Torres et al., 2013; Navarro et al.,
2013) to offer algae exposed to current and 2100-projected pCO2 levels
to adult individuals of O. tuberculata (Meinshausen et al., 2011). Our
aim was to assess the effects of this stressor on amphipod's preference,
consumption, and absorption efficiency, by conducting a direct compari-
sonbetween juvenile andadult individuals of this species, a novel approx-
imation in this kind of studies.

2. Materials and methods

Adult and juvenile individuals of O. tuberculata (hereafter amphi-
pods)weremanually collected during the summer of 2013 fromCalfuco
beach, South-central Chile (ca. 39°S) and held in laboratory conditions
following Duarte et al. (2011). Fresh seaweed (Durvillaea antarctica)
were collected from adjacent rocky shores and acclimated to laboratory
conditions for 3 d in a 200 L tank containing filtered (5 μm) seawater.
The tank was under 120 μmol photons m−2 s−1, illuminated by white
fluorescent lamps with a 12:12 h photoperiod at 15 °C (see Duarte et
al., 2016 for details).

2.1. Seawater acidification system and measurements

Several disks with 20 mm diameter (~4 g) were extracted from the
algal fronds and maintained in 4 L seawater plastic containers bubbled
with either 390 ppm or 1000 ppm pCO2 concentrations for 10 d (n =
8 per treatment). The pCO2 concentrations were achieved by using a
laboratory-basedmesocosms designed to evaluate OA effects onmarine
organisms (Torres et al., 2013). The 390 ppm reflected current condi-
tions whereas 1000 ppm reflected projected pCO2 for the end of the
century (Caldeira and Wickett, 2003; Feely et al., 2004; Meinshausen
et al., 2011). To obtain 390 ppm, pure atmospheric air was bubbled
into the containers. For 1000 ppm, we blended dry air with pure CO2

to the target concentration using mass flow controllers (MFCs, www.
aalborg.com) for air and CO2 and bubbled it into the containers
(Navarro et al., 2013). Dry and clean air was generated by compressing
atmospheric air (117 psi) using an oil-free air compressor.

During the trials, total alkalinity (TA; Haraldsson et al., 1997) was
measured every 3 d (n = 3) whereas pH, temperature and salinity
weremonitored daily. pHwasmeasured in a closed 25-mL cell thermo-
statically controlled at 25.0 °C using a Metrohm 713 pH meter (input
resistance N 1013 Ohm, 0.1 mV sensitivity, and nominal resolution
0.001 pHunits) and a glass combined double junctionAg/AgCl electrode
(Metrohm model 6.0219.100) calibrated with 8.089 Tris buffer (DOE,
1994) 25 °C. pH is reported on the total hydrogen ion scale (DOE,
1994). TA, pH, phosphates and dissolved silicates (Strickland and
Parsons, 1968) were used to calculate the rest of the carbonate system
parameters and the saturation stage of Omega, Aragonite and Calcite
using CO2SYS software (Lewis and Wallace, 1998). These were set
with Mehrbach solubility constants (Mehrbach et al., 1973) refitted by
Dickson and Millero (1987).

2.2. Consumption with choice (food preference) and without choice, and
absorption efficiency

Algal disks exposed to 390 and 1000 ppm CO2 were offered simulta-
neously to groups of 4 amphipods per container (5× 5 cmplastic bottles
Please cite this article as: Benítez, S., et al., Ontogenetic variability in the fee
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with perforated lids for airflow; n = 5-10 for adults and juveniles). To
prevent potential errors, identification of each algal disk in each repli-
cate was achieved by tagging and anchoring the disks to a place previ-
ously labeled in the container using small wood matches. Trials run
for 24 h at 15 °C at constant humidity and with a 12:12 photoperiod
(Duarte et al., 2016). For estimation of consumption without choice,
similar experiments were run by offering similar algal disks but sepa-
rately (n= 5-10 for adults and juveniles). Each experimental container
was matched with a reference container containing only alga that was
used to estimate change in weight in the absence of amphipod con-
sumption (Roa, 1992). At the beginning and end of the experiments, in-
dividual algal disks were weighed (±0.0001 g) to determine mass
changes. The changes in algal mass unrelated to consumption were cal-
culated as follows (Roa, 1992; Silva et al., 2004):

Consumption rate ¼ Einitial−Efinalð Þ− Cinitial−Cfinalð Þ

where E and C denote Experimental and Control algal weights, respec-
tively. For all the measurements conducted, rates of consumption
were standardized as amount of biomass per individual amphipod (ei-
ther adult or juvenile) or mg individual−1 d−1.

Absorption efficiencywas derived from the relationship between or-
ganic and inorganicmatter of ingested food and fecalmaterial (Conover,
1966):

AE ¼ F0−E0ð Þ= 1−E0ð ÞF0½ � � 100

where AE = Absorption efficiency (%), F′= Proportion of organic mat-
ter in the food and E′ = Proportion of organic matter in the feces. Ab-
sorption efficiency was estimated in two parallel experiments
conducted separately for juveniles and adults. To collect fecal pellets,
groups of 3 amphipods (either juveniles or adults)were kept 4 d in plas-
tic bottles with algal disks exposed to either 390 or 1000 ppmCO2 (n=
5-10 for adults and juveniles). Feces were collected every 12 h and fro-
zen until analysis. Simultaneously, algal disks were removed and re-
placed with fresh fragments. Feces were dried at 60 °C for 48 h,
weighed and then burned in a muffle furnace at 450 °C for 3 h and
weighed again to determine the organic and inorganic content. The
same methodology was used to determine the percent organic matter
in the algae exposed to the different pCO2 levels.

2.3. Data analysis

Differences in consumption rates with choice, consumption rates
without choice and absorption rates, were assessed separately using
two-wayANOVAs. These analyses assessed the contribution of the onto-
genetic life stage (juvenile versus adult), the pCO2 level (390 versus
1000 ppm) and the interaction between both variables.When the inter-
action termwas significant, additional one-way ANOVAswere conduct-
ed to compare each explanatory variable separately (Underwood,
1997). ANOVA assumptions were checked in each analysis using Sha-
piro-Wilk tests (normality) and Levene tests (equal variance).

3. Results

Amphipod consumption rates with and without a choice of algae
(Fig. 1a,b) were significantly associated to life stage and pCO2 level.
However, their significant interaction prevented a direct assessment of
each explanatory variable (two-way ANOVA p ≤ 0.011 in all compari-
sons; Table 1). With regards to life stage, adult amphipods consumed
near ten times more algae than juveniles, both when they had a choice
(Fig. 1a) or had no choice of algae (Fig. 1b). In both cases, these differ-
ences were significant (Two-way ANOVA p ≤ 0.001; Table 1). With
regards to pCO2 levels, when amphipods had the chance to choose be-
tween the two algal types, both juveniles and adults consumed as
least twice as much algae maintained at current pCO2 levels
ding behavior of amarine amphipod in response to ocean acidification,
016.07.016

http://www.aalborg.com
http://www.aalborg.com
http://dx.doi.org/10.1016/j.marpolbul.2016.07.016


Fig. 1. Mean (± SE) rates of consumption when amphipods had a choice (a) and when
they did not have a choice (b) and absorption efficiency between seaweeds maintained
at 390 and 1000 ppm (open and filled bars, respectively). Asterisks identify one-way
ANOVA significant differences between CO2 treatments for juveniles and adults
separately (see text).

Table 1
Summary of two-way ANOVA analyses assessing the influence of life stage (juvenile vs
adult) and CO2 levels (390 vs 1000 ppm) on the three response variables identified. With
the exception of absorption, datawas sqrt-transformed tomeet ANOVA assumptions. Giv-
en that significant interaction terms were detected in all the analyses, separate one-way
ANOVAs were run to assess the influence of stage and CO2 on the each response variable
(see Fig. 1). Significant p-values are highlighted in bold.

Response variable Source of variation DF MS p

Consumption with choice Stage 1 181.213 b0.001
CO2 level 1 46.138 b0.001
Stage × CO2 1 8.201 0.011
Error 26 1.099

Consumption (no choice) Stage 1 4.074 0.003
CO2 level 1 97.198 b0.001
Stage × CO2 1 9.846 b0.001
Error 17 0.348

Absorption efficiency Stage 1 530.898 b0.001
CO2 level 1 83.468 0.135
Stage × CO2 1 154.053 0.048
Error 18 34.077
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(390 ppm) than alga maintained at 1000 ppm (one-way ANOVA p =
0.020 in both comparisons; Fig. 1a,b). In the experiments in which am-
phipods did not have the possibility to choose between the two algal
types, juveniles consumed significantly more algae exposed to
1000 ppm (one-way ANOVA p = 0.020; Fig. 1b) whereas the exact op-
posite was observed in adults, which significantly consumed higher
amounts of algaemaintained at 390 ppm (one-way ANOVA p= 0.020).

With regards to amphipod absorption efficiency, juveniles showed a
significantly higher absorption efficiency than adults (Fig. 1c; two-way
Please cite this article as: Benítez, S., et al., Ontogenetic variability in the fee
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ANOVA p b 0.001, Table 1), but life stage interacted significantly with
pCO2 level (two-wayANOVA p=0.048; Table 1) preventing a direct as-
sessment of each variable. Separate comparisons showed that absorp-
tion efficiency of juveniles was significantly higher on algae
maintained at current pCO2 levels (390 ppm; one-way ANOVA p =
0.041; Fig. 1c). Meanwhile, adults exhibited no differences in absorption
efficiency in relation to pCO2 levels (one-way ANOVA p = 0.619; Fig.
1c).

4. Discussion

Our results show that OA is an important stressor for the amphipod
O. tuberculata, and that the response of this species is more complex
than anticipated. In fact, the effects of OA on the feeding behavior and
absorption efficiency of the amphipod varies significantly across the on-
togeny (i.e. juveniles or adults). This highlights the need for more stud-
ies focusing on intra-specific ontogenetic variation in response to this
and other environmental stressors, an aspect that has not yet received
enough attention.

In a previous study (Duarte et al., 2016)we conducted nutrient anal-
yses and determined that OA (exposure to 1000 ppm) reduced signifi-
cantly the nutritive quality of D. antarctica (i.e. amount of proteins and
organic matter) in comparison to current conditions (390 ppm). Such
a change likely dictated the preference of experimental amphipods for
algae exposed to current pCO2 conditions over those at 1000 ppm. Al-
though consumption rates were 10 times higher in adults, when given
a choice both life stages showed the same level of preference for the
alga with the best nutritive quality. These results are in line with previ-
ous studies on herbivore preferences (e.g. Duffy and Hay, 1991; Barile et
al., 2004; Lastra et al., 2008; Duarte et al., 2010), in which species like
the amphipodsGammarus mucronatus and Elasmopus levis, for example,
sought primarily food items with the highest nutritive value (Cruz-
Rivera and Hay, 2000).

Our estimates of algal consumption without algal choice were inter-
esting because theymade evident a contrast in the response of juveniles
and adults individuals ofO. tuberculata to OA.While juvenile individuals
consumed significantly more algae exposed to OA (1000 ppm), adults
consumed significantly less. This type of response in juveniles has
been attributed to “compensatory behavior” (Duarte et al., 2016) in
which an herbivore consumes large amounts of algae of inferior nutri-
tive value (e.g. lower proteins content, Duarte et al., 2010) to compen-
sate for the limited amount of nutrients (e.g. Stachowicz and Hay,
1996; Cruz-Rivera and Hay, 2001). Unlike juveniles, adults remained
consistent and consumed significantly more of the best quality alga
(390 ppm) both when they had or not the chance to choose between
algae. It is likely that adults did not use compensatory feeding simply
because they did not need it in order to fulfill their nutritive
ding behavior of amarine amphipod in response to ocean acidification,
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requirements. If that hypothesis is correct, it would also explain why
adults did not exhibit differences in absorption between algal types.
That latter result again contrasted what was observed in juveniles,
which showed significantly higher absorption efficiency on algal tissues
exposed to 390 ppm, which we had previously determined to have the
best nutritive quality (see Duarte et al., 2016).

Whether related to the presence of an stressor or not, consumption
and absorption efficiency on a same food source can change among spe-
cies and among populations of the same species (Slansky, 1993; Bowen
et al., 1995; Barbehenn et al., 2004). Indeed, prior studies on adults of O.
tuberculata have showed considerable variation in consumption and ab-
sorption rates on a same type of alga, with individuals opting or not to
use compensatory feeding (Duarte et al., 2010, 2011, 2014). Although
the lack of compensatory feeding in adults was not necessarily unex-
pected, we still lack clear explanations for the distinct feeding strategies
showedby the two life stages. Someauthors assume that differences be-
tween juveniles and adults are always linked to a tradeoff between en-
ergy demands associated with growth (both stages) or reproduction
(adult stages) (Contreras et al., 2003; Pavia et al., 1999; Scapini et al.,
1992; Jormalainen et al., 2001a, 2001b). Stressors like OA can alter
tradeoffs like this, adding considerable complexity to consumer feeding
strategies. Therefore, further studies on the response of different life
stages to OA are a priority, particularly in Talitrid species like O.
tuberculata. Given their dominance in terms of abundance and biomass
in many coastal areas, their response to OA may have ramifications to
entire coastal communities.
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